Jump to content

ELECTRIC SIGN SUPPLIES
If You're Looking For Premium Electric Sign Industry Components From Trim Cap, LED's, Neon Supplies, Power Supplies, Pattern Paper.  Then Please Visit Our Online Store or Feel Free To Call Us For Inquiries or Placing an Order!!
Buy Now

SIGN INSTALLER MAP
Looking for a fellow Sign Syndicate Company Member For A Sign Install or Maintenance Call?
Click Here

For Sign Company's Who Work As Subcontractors
Before You Work For A National Sign & Service Company You Need To Look At The Reviews Of These Companies Before You Work For Them. Learn When To Expect Payment From Them and What It's Like To Work For Them, The Good, The Bad, The Ugly. Learn and Share Your Experiences Yourself For Others

Click Here

Leaderboard

Popular Content

Showing content with the highest reputation since 03/28/2023 in all areas

  1. Razor, you carpooled with Fred Flintstone too?
    1 point
  2. It does look like flex material. Without seeing the whole side I'm only guessing so... i would drill a hole in the cabinet (under the molding and then fill with silicone) and look inside. Hopefully there are extruded clips/bars holding the face taut so a whole section can come off without dealing with a multitude of clips. From the angle of the photo I'd say this is a signcomp bleed frame. Are there black plastic clips in the gap above/below the face? if so you can remove them with a screwdriver - assuming the whole thing doesn't come off. I'd sure there are videos on tensioning signcomp extrusion kits that can show much better than i could explain. A tensioning tool signcomp will make re-installing the clips easier but again a screwdriver can do the job, just a lot slower. Anyway, that's my guess!
    1 point
  3. Well said. Thanks for the update, We are only as good as the products we can purchase
    1 point
  4. I was just having a conversation with a buddy the other day about the Sign Industry. He asked me what I think is our industries biggest problem right now is. I answered pretty quick as it has been on my mind a lot lately. I told him that there isn't enough competition like there was decades back. Glantz just bought another Sign Supplier, there have been a lot of mergers between other Sign Suppliers. Right now, when it comes to LEDs that we buy at Sign Suppliers, those options have shrunk. Let's look at Principal LED for example. They bought Transco, they bought Ventex (took their LED line away), they bought Aries Graphics (Neon & LED Wizard), and just recently they bought Sloan LED. Quality when it came to their LEDs has been average over the years. There's nothing real premium about them, in fact over the years the quality and efficiency has gone down. Options of what you can buy as Sign Suppliers has shrunk, you can go there and you can buy, let's see....Principal, Sloan....and Principal & Sloan. I just saw a concerned post the other day on FB stating that LED prices are going up. I'm sure, why would they lower when the options are so few??? It's like the shrinking of Gas Stations, think of it as if there was only Mobile to buy your Gas. With less competition, can you see prices lowering, quality improving? No. That only happens when there is enough competition. The only real improvement in the last couple of years has been MET joining into the Laboratory fray. There is no longer just UL, there is also MET. This is the ONLY improvement I've seen in some time. Now, don't get me wrong. I'm all for Capitalism, and credit Principal LED for making all the right moves and rubbing out the competition. There is PLENTY of upside for them with making moves to shrink the competition, it's just when we as consumers are provided with less options....we end up paying more for less, that is the downside with not much competition in our market place. Unless of course, Principal LED becomes real generous and decides to cut prices and build better products despite the shrinking competition and takes this upon themselves....but this rarely happens....let's be real, how often as consumers does the happen? Just think if you were the only sign shop in town with no competitors to compete with? Would you be driven to provide the best customer service and use only the very best in components for your signs so they stand out at night? Would your attitude towards your clients change a little?
    1 point
  5. So….What makes the High-End BrightON LED Series Kick Ass? Well.....we'll show you! Let’s go over a few quick specs first and how they differ from a few of the major brands out on the market right now. For this purpose we compared the BrightON II to Principal’s Qwik Mod2, and Sloan LED’s Value Line 4, or VL4 as most know it as. The Shoot Out Sloan LED Value Line 4 (Left), Principal LED Qwik Mod (Center), BrightON II LED (Right) The Benchmark Comparison Details Each Channel is 24” L x 4.25” W x 5” Deep. Why 4.25” Width? Well, because the standard told you that each stroke of Neon should hold for 4”, at 6” or 8” you would add another. The acrylic face is just a simple 1/8” #7328 MC White. The module spacing for all modules is also the same at 6.5” OC The first thing you should know is that the BrightON II is Constant Current Module, NOT Constant Voltage. Both the Qwik Mod2 and VLT 4 are Constant Voltage. We’ll get back to this part in a bit, and maybe we will follow through in a separate article when it comes to CC vs CV and what the pro’s and con’s are. The BrightON II uses 18AWG for the module system wiring, the Qwik Mod2 and VL4 both use 20 AWG, so they will both incur some voltage loss in longer string strands, especially if it's s shop who likes to load 30 to 50 modules on a single string, this 20 AWG wiring doesn’t not help a Constant Voltage LED System, this works against it. The BrightON II is 24V, the Principal LED Qwik Mod 2, and Sloan VL4 LED modules are 12V. With 24V you have half the current flowing across the system, which in turn means less heat and resistance than a 12V system. This also means, longer life. The BrightON II is .8 watts per module, the Qwik Mod 2 is also .8 watts per module, the Sloan VL4 however is a higher wattage module at .96 watts. Usually higher wattage means higher light output. The Surface Lighting Results Since we’re in America, we’re using Foot Candles to measure Light Output, in a measured off area on each acrylic face (6” x 4.25”) we use an ExTech Light meter to measure the High and Lows, just like we have done in all past Benchmark Lighting Comparisons such as The Great White Hope, The Red Light District, & Blue Light Special. We add both measurement (High's & Low's) numbers together and divide by 2. i.e. FC High of 232 + FC Low of 226 = 458 FC. 458 FC / 2 = 229 FC, or 229 Foot Candle Average. As you can see, for the same power modules, the BrightON II is 29% brighter on the sign surface (Luminance), and 17% brighter than the higher wattage Sloan VL4. Lastly, let’s look at the Foot Candles Per Watt. This is the amount of light per watt on the acrylic or sign face surface. This illustrates the efficiency of each module, or light output per water being consumed. Depending on the quality of the chip, some will produce more light than others consuming the same amount of power. The BrightON far exceeds the Principal Qwik Mod 2, and the Sloan Value Line 4 in light efficiency. Constant Voltage Now let's talk about the Constant Voltage LED System and how it affects Sign Applications and Projects. CV LED modules only use Resistors to protect the system, this is minimal. Sometimes LED Power Supplies can kill these Systems especially when not loaded right. A lot of LED PSU's (LED Power Supply Units) vary in the voltage out, or secondary. Some Secondaries can output about 12.15 to 12.24, sometimes slightly higher. That fraction of a volt makes the LEDs run hotter and the brightness of the LED goes up beyond the intended purpose. Also, if you light a string of say 25 LEDs, the first module takes a bigger hit than the last LED module on the string, also the light output of the first module is brighter than the last. You will have inconsistent lighting of LED modules on long strings when it comes to CV Modules. Fractions of a volt dim the LED modules from string to string or Jump to jump. Simulation We simulated this small sign using 18 AWG wiring hooked up to measured LED Strings. We took a 12V PSU and hooked it up to three groups of LED Strings with Similar Loads to represent individual channel letters I also drew up a illustration to show you what we did for our benchmark test, and what his benchmark is representing. If you look at PSU 1, you'll notice that like most of how these signs are installed, the PSU goes to the first two letters of a group we'll call Jump 1, which is about 5' to 6' secondary cable length coming from the LED PSU, and extension or jumper to the second group also 6' cable length, and to the third also 6' from Jump 2. We took a volt meter and measured what the voltage was at each jump point. Keep in mind, this much smaller than how signs are installed in the field, the secondary wiring used to crimp led string in letters then to jump points ins much longer as we all know, jumps are also much longer. But this is a simple bench mark, we're not going extreme. Jump 1 Voltage Measurements 11.89 Volts Jump 2 Voltage Measurements 11.66 Volts Jump 3 Voltage Measurements 11.62 Volts So, now that we have our voltage measurements of each jump, we'll use those voltage numbers to illuminate a channel to show you how the light output is affected using by the voltage drops on a CV system. We used a LED power Supply where we control the voltage, also using a ExTech Light meter. Jump 1 @ 11.89 Volts = 240 Foot Candles Jump 2 @ 11.66 Volts = 226 Foot Candles Jump 3 @ 11.62 Volts = 224 Foot Candles Like I said, this is a smaller version than what can happen in the field of installation where there is longer runs and jumps of secondary cable. It's common to see 11volts at some points or jumps. If we take this power supply down to simulate 11 volts, the light output drops to 190 Foot Candles. Now let's go the other way, let's go 12.24 Volts. 260 Foot candles, and climbs with each fraction of a volt up. Not good for LED Modules Constant Current With Constant Current LED systems, each module has a current regulated by having an on board CR Chip. What this does is govern the current, in short....it's extra protection. How it differs is, unlike CV LEDs, where the last LED module on a string of 25 will be just as bright as the first module on that string. Also, going over the intended voltage will not affect the light output or life that it will with CV LED. CC LEDs assure consistent brightness throughout your sign, and longer life than a CV LED Module where they can be overdriven Let's show you the second part to this illustration and benchmark The 24V BrightON II Content Current LED Module Simulation Jump 1 Voltage Measurement 23.95 Volts Jump 2 Voltage Measurement 23.82 Volts Jump 3 Voltage Measurements 23.82 Volts (No Change) Now for the light output Jump 1 @ 23.94 Volts = 334 Foot Candles Since Jump 2 & 3 voltage measurements @ 23.82 Volts the light output is the same at 333 Foot Candles The drop in light was so minimal with a fraction of a volt it took us going down to 22.5 volts to see any kind of significant drop in light. Let's go the other way and drive the string to 27 volts. No affect on light output There has been a lot of questions about CC and CV LEDs in our industry and how it affects signs in the field, so I hope this answers some of those questions. This is why the High-End BrightON LED Line really KICK ASS! The complete LED line is Constant Current, both 24V & 12V Modules, The BrightON II, IV, and SunFire are all 24V. 24V allows users to load more LEDs on a single channel / PSU Unite to 96Watts over a 60W Channel / PSU. You also have half the Current, Resistance & Heat of that of a 12V system. As you can see from the comparison above, you get more light for the same power as other LED manufacturers and at times higher wattage modules. That's Efficiency! The BrightON LED line is also very Under Driven, where as there drive theirs to peak to achieve certain light output, and this will lessen LED Module Life.
    1 point
  6. Get paid in full for the 1st job. That is a separate PO and completed work with no issues OR....Lien that job As far as the 2nd job, Read in between their Policy lines. It probably says " We can hire any contractor to fix or warranty the work and deduct it from you " This is the usual BS wording and rarely done. They should have called you and told you to fix it and move forward. Maybe it was a simple 15 minute job for you. But the next guy was told " Don't worry about the cost, it is on the other company and charged it without any hesitation to cost. Maybe the Original Company charged you 3 times what the repair company charged. Its all about making money. If you can't get paid, Lien the job. You have NO FRIENDS left at the Original Company,
    1 point
  7. I never repo signs because of non payment....I remove them because I discovered there is inferior material used by mistake and it is a hazard so I need to remove and repair or asap. I will reinstall asap...oops. While I happen to discuss this with the customer I say " oh by the way...there is a small balance due on this"
    1 point
×
  • Create New...